Signaling pathways involved in regulating T cell proliferation and survival are not well understood. Here we have investigated a possible role of the nuclear factor (NF)-κB pathway in regulating mature T cell function by using CD4+ T cells from p50−/− cRel−/− mice, which exhibit virtually no inducible κB site binding activity. Studies with these mice indicate an essential role of T cell receptor (TCR)-induced NF-κB in regulating interleukin (IL)-2 expression, cell cycle entry, and survival of T cells. Our results further indicate that NF-κB regulates TCR-induced expression of antiapoptotic Bcl-2 family members. Strikingly, retroviral transduction of CD4+ T cells with the NF-κB–inducing IκB kinase β showed that NF-κB activation is not only necessary but also sufficient for T cell survival. In contrast, our results indicate a lack of involvement of NF-κB in both IL-2 and Akt-induced survival pathways. In vivo, p50−/− cRel−/− mice showed impaired superantigen-induced T cell responses as well as decreased numbers of effector/memory and regulatory CD4+ T cells. These findings provide the first demonstration of a role for NF-κB proteins in regulating T cell function in vivo and establish a critically important function of NF-κB in TCR-induced regulation of survival.
Inflammatory bowel disease (IBD) is a chronic disorder of the gastrointestinal tract that has limited treatment options. To gain insight into the pathogenesis of chronic colonic inflammation (colitis), we performed a multiomics analysis that integrated RNA microarray, total protein mass spectrometry (MS), and phosphoprotein MS measurements from a mouse model of the disease. Because we collected all three types of data from individual samples, we tracked information flow from RNA to protein to phosphoprotein and identified signaling molecules that were coordinately or discordantly regulated and pathways that had complex regulation in vivo. For example, the genes encoding acute-phase proteins were expressed in the liver, but the proteins were detected by MS in the colon during inflammation. We also ascertained the types of data that best described particular facets of chronic inflammation. Using gene set enrichment analysis and trans-omics coexpression network analysis, we found that each data set provided a distinct viewpoint on the molecular pathogenesis of colitis. Combining human transcriptomic data with the mouse multiomics data implicated increased p21-activated kinase (Pak) signaling as a driver of colitis. Chemical inhibition of Pak1 and Pak2 with FRAX597 suppressed active colitis in mice. These studies provide translational insights into the mechanisms contributing to colitis and identify Pak as a potential therapeutic target in IBD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.