Butanediol is a crucial monomer for the production of biodegradable plastics such as polybutylene succinate (PBS) and polybutyleneadipate-co-terephthalate (PBAT). It is also utilized in the synthesis of derivatives such as γ-butyrolactone and tetrahydrofuran. The technology of direct hydrogenation of maleic anhydride to produce 1,4-butanediol on Cu-based catalysts has gained significant attention due to its short process, mild reaction conditions, cost-effective catalysts, and the ability to cogenerate various products. This makes it a promising avenue for the production of 1,4-butanediol. At present, the reaction mechanism for the direct hydrogenation of maleic anhydride to produce 1,4butanediol on Cu−ZnO is not well understood, and the types and pathways of byproducts remain unclear. This lack of clarity hinders the modification and application of catalysts for the direct hydrogenation of maleic anhydride to produce 1,4-butanediol. This study systematically investigates the reaction mechanism of direct hydrogenation of maleic anhydride to produce 1,4-butanediol on Cu− ZnO using spin-polarized density functional theory. The adsorption properties of surface species were studied, revealing that key species succinic anhydride, γ-butyrolactone, 1,4-butanediol, tetrahydrofuran, and n-butanol exhibit more stability in adsorption at the Cu211−ZnO interface compared to noninterface regions. The optimal pathway for the main reaction of direct hydrogenation of maleic anhydride on the Cu211 surface is clarified as