Background: GPS telemetry has revolutionized the study of animal spatial ecology in the last two decades. Until recently, it has mainly been deployed on large mammals and birds, but the technology is rapidly becoming miniaturized, and applications in diverse taxa are becoming possible. Large constricting snakes are top predators in their ecosystems, and accordingly they are often a management priority, whether their populations are threatened or invasive. Fine-scale GPS tracking datasets could greatly improve our ability to understand and manage these snakes, but the ability of this new technology to deliver high-quality data in this system is unproven. In order to evaluate GPS technology in large constrictors, we GPS-tagged 13 Burmese pythons (Python bivittatus) in Everglades National Park and deployed an additional 7 GPS tags on stationary platforms to evaluate habitat-driven biases in GPS locations. Both python and test platform GPS tags were programmed to attempt a GPS fix every 90 min.Results: While overall fix rates for the tagged pythons were low (18.1%), we were still able to obtain an average of 14.5 locations/animal/week, a large improvement over once-weekly VHF tracking. We found overall accuracy and precision to be very good (mean accuracy = 7.3 m, mean precision = 12.9 m), but a very few imprecise locations were still recorded (0.2% of locations with precision > 1.0 km). We found that dense vegetation did decrease fix rate, but we concluded that the low observed fix rate was also due to python microhabitat selection underground or underwater. Half of our recovered pythons were either missing their tag or the tag had malfunctioned, resulting in no data being recovered.Conclusions: GPS biologging technology is a promising tool for obtaining frequent, accurate, and precise locations of large constricting snakes. We recommend future studies couple GPS telemetry with frequent VHF locations in order to reduce bias and limit the impact of catastrophic failures on data collection, and we recommend improvements to GPS tag design to lessen the frequency of these failures.