Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Different applications of fracture bridging and diversion are used regularly in carbonate acid fracturing without an in-depth understanding of the physical phenomena that dominate the processes involved in the bridging and diversion process. The extension of modeling capabilities in conjunction with yard-scale and field-scale experiences will increase our understanding of these processes. A robust multimodal diversion pill and polylactic acid fiber-laden viscous acid were utilized for near-wellbore and far-field bridging, respectively. Numerous field treatments demonstrated the uncertainty of achieving effective diversion. An existing multiphysics model was extended to develop functionalities to model diversions at different scale. Extensive laboratory testing was conducted to understand the scale of bridging and diversion mechanisms. Finally, a bridging yard test was designed, and field case studies were used to integrate all the branches. Field cases showed a diversion pressure up to 4,000 psi depending on perforation strategy, pill volume, and pill seating rate. Correlations showed the interdependence of multiple parameters in diversion processes. The field studies motivated modeling capabilities to simulate the critical diversion processes at high resolution and quality. The model simulates diverting agents that reduce leakoff in the fracture area and their effects on fracture geometry. The approach considers the acid reaction kinetics coupled with geomechanics and fluid transport. Different diverting agent concentrations required for bridging can be modeled effectively. A yard test was designed to confirm the integrity of the pill material through completion valves (minimum inside diameter 9.5 mm) and analyzed with high-resolution imaging. All the theoretical, mathematical, and numerical findings from modeling were integrated with laboratory- and yard-scale experimentation results to develop and validate near-wellbore and far-field diversion modeling. Analytical correlations were formulated from injection rate, particulate material concentration, pill volumes, fracture width, etc., to incorporate and validate the model. This study enhances understanding of the different diversion mechanisms from high-fidelity theoretical modeling approach integrated with a practical experimental view at laboratory and field scale. Current comprehensive research has significant potential to make the modeling approach a reliable method to develop tight carbonate formations around the globe.
Different applications of fracture bridging and diversion are used regularly in carbonate acid fracturing without an in-depth understanding of the physical phenomena that dominate the processes involved in the bridging and diversion process. The extension of modeling capabilities in conjunction with yard-scale and field-scale experiences will increase our understanding of these processes. A robust multimodal diversion pill and polylactic acid fiber-laden viscous acid were utilized for near-wellbore and far-field bridging, respectively. Numerous field treatments demonstrated the uncertainty of achieving effective diversion. An existing multiphysics model was extended to develop functionalities to model diversions at different scale. Extensive laboratory testing was conducted to understand the scale of bridging and diversion mechanisms. Finally, a bridging yard test was designed, and field case studies were used to integrate all the branches. Field cases showed a diversion pressure up to 4,000 psi depending on perforation strategy, pill volume, and pill seating rate. Correlations showed the interdependence of multiple parameters in diversion processes. The field studies motivated modeling capabilities to simulate the critical diversion processes at high resolution and quality. The model simulates diverting agents that reduce leakoff in the fracture area and their effects on fracture geometry. The approach considers the acid reaction kinetics coupled with geomechanics and fluid transport. Different diverting agent concentrations required for bridging can be modeled effectively. A yard test was designed to confirm the integrity of the pill material through completion valves (minimum inside diameter 9.5 mm) and analyzed with high-resolution imaging. All the theoretical, mathematical, and numerical findings from modeling were integrated with laboratory- and yard-scale experimentation results to develop and validate near-wellbore and far-field diversion modeling. Analytical correlations were formulated from injection rate, particulate material concentration, pill volumes, fracture width, etc., to incorporate and validate the model. This study enhances understanding of the different diversion mechanisms from high-fidelity theoretical modeling approach integrated with a practical experimental view at laboratory and field scale. Current comprehensive research has significant potential to make the modeling approach a reliable method to develop tight carbonate formations around the globe.
Vertical wells require diagnostic techniques after minifrac pumping to interpret fracture height growth. This interpretation provides vital input to hydraulic fracturing redesign workflows. The temperature log is the most widely used technique to determine fracture height through cooldown analysis. A data science approach is proposed to leverage available measurements, automate the interpretation process, and enhance operational efficiency while keeping confidence in the fracturing design. Data from 55 wells were ingested to establish proof of concept.The selected geomechanical rock texture parameters were based on the fracturing theory of net-pressure-controlled height growth. Interpreted fracture height from input temperature cooldown analysis was merged with the structured dataset. The dataset was constructed at a high vertical depth of resolution of 0.5 to 1 ft. Openhole log data such as gamma-ray and bulk density helped to characterize the rock type, and calculated mechanical properties from acoustic logs such as in-situ stress and Young's modulus characterize the fracture geometry development. Moreover, injection rate, volume, and net pressure during the calibration treatment affect the fracture height growth. A machine learning (ML) workflow was applied to multiple openhole log parameters, which were integrated with minifrac calibration parameters along with the varying depth of the reservoir. The 55 wells datasets with a cumulative 120,000 rows were divided into training and testing with a ratio of 80:20. A comparative algorithm study was conducted on the test set with nine algorithms, and CatBoost showed the best results with an RMSE of 4.13 followed by Random Forest with 4.25. CatBoost models utilize both categorical and numerical data. Stress, gamma-ray, and bulk density parameters affected the fracture height analyzed from the post-fracturing temperature logs. Following successful implementation in the pilot phase, the model can be extended to horizontal wells to validate predictions from commercial simulators where stress calculations were unreliable or where stress did not entirely reflect changes in rock type. By coupling the geometry measurement technology with data analysis, a useful automated model was successfully developed to enhance operational efficiency without compromising any part of the workflow. The advanced algorithm can be used in any field where precise fracture placement of a hydraulic fracture contributes directly to production potential. Also, the model can play a critical role in cube development to optimize lateral landing and lateral density for exploration fields.
The design of fracture diversion in tight carbonates has been a challenging problem. Recently, a conceptual and theoretical workflow was presented using a β diversion design parameter that uses system volumetric calculations based on high-fidelity modeling and mathematical approximations of the etched system. A robust field validation of that approach and near-wellbore diversion modeling was conducted to extend the application. Extensive laboratory and yard-scale testing data were utilized to realize the diversion processes. Fracture and perforation modeling coupled with fracture diagnostics was used to define system volumetrics, defined as the volume where the fluid needs to be diverted away from. Multimodal particulate pills were used based on a careful review of the size distribution and physical properties. Bottomhole reactions and post-fracturing production for multiple wells and 100 particulate pills were studied to see the effect of the β factor on diversion and production performance. A multiphysics near-wellbore diversion model was used for the first time to simulate the pill effect. Representative wells were selected for the validation study; these included vertical and horizontal wells and varying perforation cluster design, stages, and acid treatments. A complex problem was solved with reaction modeling coupled with near-wellbore diversion for the first time based on given lithology and pumped volumes to match the treatment and diversion differential pressures. Final active fractures and stimulation efficiency were computed through etched geometry. The results showed a range of etched fracture length from 86 to 109 ft and width of 0.05 to 0.08 in. A similar approach was used for perforation system analysis. Diversion pills from 2 to 15 per well were investigated with a 5- to 12-bbl particulate diversion pill range. Finally, the β factor was calculated for each case based on the diversion material and system volumetric ratio. The parameter was plotted against the average diversion pressure achieved and showed an R2 of 0.87. Based on the comprehensive theoretical, numerical modeling, and field-coupled findings, a β factor of 0.8 to 1.0 is recommended for optimum diversion and production performance. For multiple cases, stimulation efficiency and production performance have been enhanced up to 200%. From the field results, it is evident that the design of near-wellbore diversion needs to be strategic. The unique diversion framework provides the basis for such a well- and reservoir-specific strategy. Proper and scientific use of diversion material and modeling can lead to advances in overall project management by optimizing the cost–efficiency–quality project triangle. Digital advancements with digitized cores, fluid systems, and advanced modeling have significant potential for the engineered development of tight carbonates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.