Sustainability is a common goal and catchphrase used in conjunction with seafood, but the metrics used to determine the level of sustainability are poorly defined. Although the conservation statuses of target or nontarget fish stocks associated with fisheries have been scrutinized, the relative climate impacts of different fisheries are often overlooked. Although an increasing body of research seeks to understand and mitigate the climate forcing associated with different fisheries, little effort has sought to integrate these disparate disciplines to examine the synergies and trade-offs between conservation efforts and efforts to reduce climate impacts. We quantified the climate forcing per unit of fish protein associated with several different U.S. tuna fishing fleets, among the most important capture fisheries by both volume and value. We found that skipjack tuna caught by purse seine, a gear type that is often associated with relatively high bycatch of nontarget species, results in lower climate forcing than all other sources of proteins examined with the exception of plants. Conversely, skipjack tuna caught by trolling, a gear type that is often associated with relatively low bycatch of nontarget species, generates higher climate forcing than most other protein sources with the exception of beef. Because there is a range of selectivity and climate forcing impacts associated with fishing gears, examining the trade-offs associated with bycatch and climate forcing provides an opportunity for broadening the discourse about the sustainability of seafood. A central goal of more sustainable seafood practices is to minimize environmental impacts, thus mitigation efforts—whether they target conservation, habitat preservation, or climate impacts—should consider the unintended consequences on fisheries conservation.