Partial Least Squares Path Modeling 2017
DOI: 10.1007/978-3-319-64069-3_12
|View full text |Cite
|
Sign up to set email alerts
|

Integrating Non-metric Data in Partial Least Squares Path Models: Methods and Application

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
4
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(5 citation statements)
references
References 18 publications
0
4
0
1
Order By: Relevance
“…PLS methods can also be performed with (non-metric) nominal or ordinal indicators by introducing an optimal scaling step (Petrarca et al, 2017). Here, non-metric variables are assigned values on an interval scale by optimizing additional scaling parameters as part of the iterative PLS-SEM process.…”
Section: Discussionmentioning
confidence: 99%
See 3 more Smart Citations
“…PLS methods can also be performed with (non-metric) nominal or ordinal indicators by introducing an optimal scaling step (Petrarca et al, 2017). Here, non-metric variables are assigned values on an interval scale by optimizing additional scaling parameters as part of the iterative PLS-SEM process.…”
Section: Discussionmentioning
confidence: 99%
“…To evaluate the roles of spatial and environmental constraints on fish communities, we applied non‐metric partial least‐squares structural equation modelling (NM‐PLS‐SEM, also called PLS path modelling) paired with multiple logistic regression (Petrarca et al., 2017). PLS‐SEM is a variance‐based approach to estimating unobserved latent variables and their relationships by a series of simple or multiple ordinary least‐squares (OLS) regressions (Sanchez, 2013).…”
Section: Methodsmentioning
confidence: 99%
See 2 more Smart Citations
“…Tahap selanjutnya adalah melakukan pengujian kolinieritas dengan menghitung nilai Variance Inflation Factor (VIF). Nilai VIF digunakan untuk melihat apakah terjadi multikolinieritas atau tidak di dalam model sehingga nilai VIF harus lebih kecil dari 10 agar tidak ada indikasi terjadi multikolinieritas (Petrarca, Russolillo, & Trinchera, 2017). Pada hasil yang telah dilakukan, didapatkan hasil bahwa nilai VIF pada setiap variabel dalam model adalah 3,877 (SCA), dan 1,993 (BP).…”
Section: Pengukuran Model Penelitianunclassified