Species distribution modeling (SDM) is a booming area of research that has had an exponential increase in use and development in recent years. We performed a search of scientific literature and found 5,533 documents published from 1993 to 2018 using SDM, representing a global network of 4,329 collaborating institutions from 155 countries, with Brazil and of Brasilia were the most productive. From this body of literature, the most frequently modeled taxonomic groups were Chordata and Insecta, and the most common realms of application were conservation planning and management, climate change, species conservation, epidemiology, evolutionary biology, and biological invasions. From the 36 modeling methods identified to generate SDMs, MaxEnt is used in 73.5% of the papers, followed by Genetic Algorithm for Rule-Set Prediction (GARP) with 18.7%, and just 7.4% of the papers compared between 3 and 10 modeling methods. In Latin American countries, productivity in SDM research could be improved as the network of collaborations diversifies and connects with other productive countries (such as United ). The scientific collaboration between Latin American countries should be increased, as the most prolific countries (Brazil, Mexico, Argentina, and Colombia) share less than 10% of its productivity. Some of the main challenges for SDM development in Latin America include bridging the gaps from (a) software use to research productivity and (b) translation to decision-making. To address these challenges, we propose to strengthen communities of practice where modelers, species experts, and decisionmakers come together to discuss and develop SDM to shift and enhance current paradigms on how science and decisionmaking are linked.