Despite much discussion about the utility of remote sensing for effective conservation, the inclusion of these technologies in species recovery plans remains largely anecdotal. We developed a modeling approach for the integration of local, spatially measured ecosystem functional dynamics into a species distribution modeling (SDM) framework in which other ecologically relevant factors are modeled separately at broad scales. To illustrate the approach, we incorporated intraseasonal water‐vegetation dynamics into a cross‐scale SDM for the Common Snipe (Gallinago gallinago), which is highly dependent on water and vegetation dynamics. The Common Snipe is an Iberian grassland waterbird characteristic of European agricultural meadows and a member of one of the most threatened bird guilds. The intraseasonal dynamics of water content of vegetation were measured using the standard deviation of the normalized difference water index time series computed from bimonthly images of the Sentinel‐2 satellite. The recovery plan for the Common Snipe in Galicia (northwestern Iberian Peninsula) provided an opportunity to apply our modeling framework. Model accuracy in predicting the species’ distribution at a regional scale (resulting from integration of downscaled climate projections with regional habitat–topographic suitability models) was very high (area under the curve [AUC] of 0.981 and Boyce's index of 0.971). Local water‐vegetation dynamic models, based exclusively on Sentinel‐2 imagery, were good predictors (AUC of 0.849 and Boyce's index of 0.976). The predictive power improved (AUC of 0.92 and Boyce's index of 0.98) when local model predictions were restricted to areas identified by the continental and regional models as priorities for conservation. Our models also performed well (AUC of 0.90 and Boyce's index of 0.93) when projected to updated water‐vegetation conditions. Our modeling framework enabled incorporation of key ecosystem processes closely related to water and carbon cycles while accounting for other factors ecologically relevant to endangered grassland waterbirds across different scales, allowed identification of priority areas for conservation, and provided an opportunity for cost‐effective recovery planning by monitoring management effectiveness from space.
Urgent action needs to be taken to halt global biodiversity crisis. To be effective in the implementation of such action, managers and policy-makers need updated information on the status and trends of biodiversity. Here, we test the ability of remotely sensed ecosystem functioning attributes (EFAs) to predict the distribution of 73 bird species with different life-history traits. We run ensemble species distribution models (SDMs) trained with bird atlas data and 12 EFAs describing different dimensions of carbon cycle and surface energy balance. Our ensemble SDMs—exclusively based on EFAs—hold a high predictive capacity across 71 target species (up to 0.94 and 0.79 of Area Under the ROC curve and true skill statistic (TSS)). Our results showed the life-history traits did not significantly affect SDM performance. Overall, minimum Enhanced Vegetation Index (EVI) and maximum Albedo values (descriptors of primary productivity and energy balance) were the most important predictors across our bird community. Our approach leverages the existing atlas data and provides an alternative method to monitor inter-annual bird habitat dynamics from space in the absence of long-term biodiversity monitoring schemes. This study illustrates the great potential that satellite remote sensing can contribute to the Aichi Biodiversity Targets and to the Essential Biodiversity Variables framework (EBV class “Species distribution”).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.