Abstract
Background: Rumen is an important digestive organ of ruminant. From fetal to adult stage, the morphology, structure and function of rumen have changed significantly. But the intrinsic genetic regulation is still limited. We previously reported a genome-wide expression profile of miRNAs in prenatal goat rumens. In the present study, we rejoined analyzed the transcriptomes of rumen miRNAs during prenatal (E60 and E135) and postnatal (D30 and D150) stages.Results: A total of 66 differentially expressed miRNAs (DEMs) were identified in the rumen tissues from D30 and D150 goats. Of these, 17 DEMs were consistently highly expressed in the rumens at the preweaning stages (E60, E135 and D30), while down-regulated at D150. Noteworthy, annotation analysis revealed that the target genes regulated by the DEMs were mainly enriched in MAPK signaling pathway, Jak-STAT signaling pathway and Ras signaling pathway. Interestingly, the expression of miR-148a-3p was significantly high in the embryonic stage and down-regulated at D150. The potential binding sites between miR-148a-3p and QKI were predicted by the TargetScan and verified by the dual luciferase report assay. The co-localization of miR-148a-3p and QKI was observed not in intestinal tracts but in rumen tissues by in situ hybridization. Moreover, the expression of miR-148a-3p in the epithelium was significantly higher than that in the other layers, suggesting that miR-148a-3p involve in the development of rumen epithelial cells by targeting QKI. Subsequently, miR-148a-3p inhibitor was found to induce the proliferation of GES-1 cells.Conclusions: Taken together, these results identified the DEMs involved in the development of rumen and provided an insight into the regulation mechanism of goat rumens during development.