This study investigated the effect of supplementing the diet of calves with two direct fed microbials (DFMs) (Saccharomyces cerevisiae boulardii CNCM I-1079 (SCB) and Lactobacillus acidophilus BT1386 (LA)), and an antibiotic growth promoter (ATB). Thirty-two dairy calves were fed a control diet (CTL) supplemented with SCB or LA or ATB for 96 days. On day 33 (pre-weaning, n = 16) and day 96 (post-weaning, n = 16), digesta from the rumen, ileum, and colon, and mucosa from the ileum and colon were collected. The bacterial diversity and composition of the gastrointestinal tract (GIT) of pre- and post-weaned calves were characterized by sequencing the V3-V4 region of the bacterial 16S rRNA gene. The DFMs had significant impact on bacteria community structure with most changes associated with treatment occurring in the pre-weaning period and mostly in the ileum but less impact on bacteria diversity. Both SCB and LA significantly reduced the potential pathogenic bacteria genera, Streptococcus and Tyzzerella_4 (FDR ≤ 8.49E-06) and increased the beneficial bacteria, Fibrobacter (FDR ≤ 5.55E-04) compared to control. Other potential beneficial bacteria, including Rumminococcaceae UCG 005, Roseburia and Olsenella, were only increased (FDR ≤ 1.30E-02) by SCB treatment compared to control. Furthermore, the pathogenic bacterium, Peptoclostridium, was reduced (FDR = 1.58E-02) by SCB only while LA reduced (FDR = 1.74E-05) Ruminococcus_2. Functional prediction analysis suggested that both DFMs impacted (p < 0.05) pathways such as cell cycle, bile secretion, proteasome, cAMP signaling pathway, thyroid hormone synthesis pathway and dopaminergic synapse pathway. Compared to the DFMs, ATB had similar impact on bacterial diversity in all GIT sites but greater impact on the bacterial composition of the ileum. Overall, this study provides an insight on the bacteria genera impacted by DFMs and the potential mechanisms by which DFMs affect the GIT microbiota and may therefore facilitate development of DFMs as alternatives to ATB use in dairy calf management.
This study aimed to explore the roles of microRNAs (miRNAs) in calf rumen development during early life. Rumen tissues were collected from 16 calves (8 at pre-weaning and 8 at post-weaning) for miRNA-sequencing, differential expression (DE), miRNA weighted gene co-expression network (WGCNA) and miRNA-mRNA co-expression analyses. 295 miRNAs were identified. Bta-miR-143, miR-26a, miR-145 and miR-27b were the most abundantly expressed. 122 miRNAs were significantly DE between the pre- and post-weaning periods and the most up- and down-regulated miRNAs were bta-miR-29b and bta-miR-493, respectively. Enrichment analyses of the target genes of DE miRNAs revealed important roles for miRNA in rumen developmental processes, immune system development, protein digestion and processes related to the extracellular matrix. WGCNA indicated that bta-miR-145 and bta-miR-199a-3p are important hub miRNAs in the regulation of these processes. Therefore, bta-miR-143, miR-29b, miR-145, miR-493, miR-26a and miR-199 family members might be key regulators of calf rumen development during early life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.