This paper considers the coupled kinematic and dynamic models of a mobile crane. A full description of boom and load movement has been provided as a response of the system to the influence of kinematic forces. The linear system model was treated as rigid, and the carried load as a nondeformed static body. To describe the position of said load, Bryant angles were used. The dynamic model includes the impact of external forces (wind pressure) while load carrying and positioning. Algorithm and calculation software were developed to enable dynamic phenomena analysis during both a work cycle and free movement of said load. The initial problem was solved by means of the ode45 calculation procedure in the Matlab software based on the Runge–Kutta 4th Order Method. The work presents exemplary results of load movement simulation with respect to various wind velocities, selected on the basis of guidelines from Poland’s standards regarding safe operation of mechanical equipment.