Abstract. This book is intended to serve both as an introduction and a reference to spectral and inverse spectral theory of Jacobi operators (i.e., second order symmetric difference operators) and applications of these theories to the Toda and Kac-van Moerbeke hierarchy.Starting from second order difference equations we move on to self-adjoint operators and develop discrete Weyl-Titchmarsh-Kodaira theory, covering all classical aspects like Weyl m-functions, spectral functions, the moment problem, inverse spectral theory, and uniqueness results. Next, we investigate some more advanced topics like locating the essential, absolutely continuous, and discrete spectrum, subordinacy, oscillation theory, trace formulas, random operators, almost periodic operators, (quasi-)periodic operators, scattering theory, and spectral deformations.Then, the Lax approach is used to introduce the Toda hierarchy and its modified counterpart, the Kac-van Moerbeke hierarchy. Uniqueness and existence theorems for the initial value problem, solutions in terms of Riemann theta functions, the inverse scattering transform, Bäcklund transformations, and soliton solutions are discussed.Corrections and complements to this book are available from: