With the constant progress of urbanization and industrialization, cadmium (Cd) has emerged as one of the heavy metals that pollute soil and water. The presence of Cd has a substantial negative impact on the growth and development of both animals and plants. The allotetraploid Brasscia. carinata, an oil crop in the biofuel industry, is known to produce seeds with a high percentage of erucic acid; it is also known for its disease resistance and widespread adaptability. However, there is limited knowledge regarding the tolerance of B. carinata to Cd and its physiological responses and gene expressions under exposure to Cd. Here, we observed that the tested B. carinata exhibited a strong tolerance to Cd (1 mmol/L CdCl2 solution) and exhibited a significant ability to accumulate Cd, particularly in its roots, with concentrations reaching up to 3000 mg/kg. Additionally, we found that the total oil content of B. carinata seeds harvested from the Cd-contaminated soil did not show a significant change, but there were noticeable alterations in certain constituents. The activities of antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX), were observed to significantly increase after treatment with different concentrations of CdCl2 solutions (0.25 mmol/L, 0.5 mmol/L, and 1 mmol/L CdCl2). This suggests that these antioxidant enzymes work together to enhance Cd tolerance. Comparative transcriptome analysis was conducted to identify differentially expressed genes (DEGs) in the shoots and roots of B. carinata when exposed to a 0.25 mmol/L CdCl2 solution for 7 days. A total of 631 DEGs were found in the shoots, while 271 DEGs were found in the roots. It was observed that these selected DEGs, which responded to Cd stress, also showed differential expression after exposure to PbCl2. This suggests that B. carinata may employ a similar molecular mechanism when tolerating these heavy metals. The functional annotation of the DEGs showed enrichment in the categories of ‘inorganic ion transport and metabolism’ and ‘signal transduction mechanisms’. Additionally, the DEGs involved in ‘tryptophan metabolism’ and ‘zeatin biosynthesis’ pathways were found to be upregulated in both the shoots and roots of B. carinata, suggesting that the plant can enhance its tolerance to Cd by promoting the biosynthesis of plant hormones. These results highlight the strong Cd tolerance of B. carinata and its potential use as a Cd accumulator. Overall, our study provides valuable insights into the mechanisms underlying heavy metal tolerance in B. carinata.