Cadmium (Cd) is a highly toxic pollutant in soil and water that severely hampers the growth and reproduction of plants. Phytoremediation has been presented as a cost-effective and eco-friendly method for addressing heavy metal pollution. However, phytoremediation is restricted by the limited number of accumulators and the unknown mechanisms underlying heavy metal tolerance. In this study, we demonstrated that Erigeron canadensis (Asteraceae), with its strong adaptability, is tolerant to intense Cd stress (2 mmol/L CdCl2 solution). Moreover, E. canadensis exhibited a strong ability to accumulate Cd2+ when treated with CdCl2 solution. The activity of some antioxidant enzymes, as well as the malondialdehyde (MDA) level, was significantly increased when E. canadensis was treated with different CdCl2 solutions (0.5, 1, 2 mmol/L CdCl2). We found high levels of superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities under 1 mmol/L CdCl2 treatment. Comparative transcriptomic analysis identified 5,284 differentially expressed genes (DEGs) in the roots and 3,815 DEGs in the shoots after E. canadensis plants were exposed to 0.5 mM Cd. Functional annotation of key DEGs indicated that signal transduction, hormone response, and reactive oxygen species (ROS) metabolism responded significantly to Cd. In particular, the DEGs involved in auxin (IAA) and ethylene (ETH) signal transduction were overrepresented in shoots, indicating that these genes are mainly involved in regulating plant growth and thus likely responsible for the Cd tolerance. Overall, these results not only determined that E. canadensis can be used as a potential accumulator of Cd but also provided some clues regarding the mechanisms underlying heavy metal tolerance.
Moricandia arvensis, a plant species originating from the Mediterranean, has been classified as a rare C3-C4 intermediate species, and it is a possible bridge during the evolutionary process from C3 to C4 plant photosynthesis in the family Brassicaceae. Understanding the genomic structure, gene order, and gene content of chloroplasts (cp) of such species can provide a glimpse into the evolution of photosynthesis. In the present study, we obtained a well-annotated cp genome of M. arvensis using long PacBio and short Illumina reads with a de novo assembly strategy. The M. arvensis cp genome was a quadripartite circular molecule with the length of 153,312 bp, including two inverted repeats (IR) regions of 26,196 bp, divided by a small single copy (SSC) region of 17,786 bp and a large single copy (LSC) region of 83,134 bp. We detected 112 unigenes in this genome, comprising 79 protein-coding genes, 29 tRNAs, and four rRNAs. Forty-nine long repeat sequences and 51 simple sequence repeat (SSR) loci of 15 repeat types were identified. The analysis of Ks (synonymous) and Ka (non-synonymous) substitution rates indicated that the genes associated with “subunits of ATP synthase” (atpB), “subunits of NADH-dehydrogenase” (ndhG and ndhE), and “self-replication” (rps12 and rpl16) showed relatively higher Ka/Ks values than those of the other genes. The gene content, gene order, and LSC/IR/SSC boundaries and adjacent genes of the M. arvensis cp genome were highly conserved compared to those in related C3 species. Our phylogenetic analysis demonstrated that M. arvensis was clustered into a subclade with cultivated Brassica species and Raphanus sativus, indicating that M. arvensis was not involved in an independent evolutionary origin event. These results will open the way for further studies on the evolutionary process from C3 to C4 photosynthesis and hopefully provide guidance for utilizing M. arvensis as a resource for improvinng photosynthesis efficiency in cultivated Brassica species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.