We are witnessing the advent of personal manufacturing, where home users and small and medium enterprises manufacture products locally, at the point and time of need. The impressively fast adoption of these technologies indicates this approach to manufacturing can become a key enabler of the real-time economy of the future. In this paper, we contribute a secure and dependable infrastructure and architecture for that new paradigm. Our solution leverages physical limitations of the computational process into a defense strategy that makes distributed file storage and transfer highly secure. The main idea is to replace asymmetric or public-key encryption functions with an unkeyed, collision, second preimage, and preimage resistant cryptographic hash function. Such a cryptosystem does not have an inverse function H-1. We challenge each block hash against the full hash table to recreate the original message. To illustrate the approach, we describe secured protocols that provide a number of desirable properties during both data storage and streaming. Similar to proof-of-work blockchain consensus algorithms, we parameterized the solution based on the amount of infrastructure available. Experiments show the proposed method can recalculate hashes for a 3-dimensional live matrix of 256 3 at an average of 14 revisions per second, and one revision every 5 minutes for a bigger matrix of 4096 3. The increase in cloud infrastructure cost is insignificant compared to the level of protection offered. INDEX TERMS Communication system security, computer aided manufacturing, content distribution networks, data security, data storage systems, distributed computing, information security, intelligent manufacturing systems, technology social factors, virtual manufacturing.