In IoT applications, data capture in a sensor network can generate a large flow of information between the nodes and the cloud, affecting response times and device complexity but, above all, increasing costs. Fog computing refers to the use of pre-processing tools to improve local data management and communication with the cloud. This work presents an analysis of the features that platforms implementing fog computing solutions should have. Additionally, an experimental work integrating two specific platforms used for controlling devices in a sensor network, processing the generated data, and communicating with the cloud is presented.