Background
Older adults face unique health challenges as they age, including physical and mental health issues and mood disorders. Negative emotions and social isolation significantly impact mental and physical health. To support older adults and address these challenges, healthcare professionals can use Information and Communication Technologies (ICTs) such as health monitoring systems with multiple sensors. These systems include digital biomarkers and data analytics that can streamline the diagnosis process and help older adults to maintain their independence and quality of life.
Method
A design research methodology is followed to define a conceptual model as the main artifact and basis for the systematic design of successful systems centered on older adults monitoring within the health domain.
Results
The results include a conceptual model focused on older adults' Activities of Daily Living (ADLs) and Health Status, considering various health dimensions, including social, emotional, physical, and cognitive dimensions. We also provide a detailed instantiation of the model in real use cases to validate the usefulness and feasibility of the proposal. In particular, the model has been used to develop two health systems intended to measure the degree of the elders' frailty and dependence with biomarkers and machine learning.
Conclusions
The defined conceptual model can be the basis to develop health monitoring systems with multiple sensors and intelligence based on data analytics. This model offers a holistic approach to caring for and supporting older adults as they age, considering ADLs and various health dimensions. We have performed an experimental and qualitative validation of the proposal in the field of study. The conceptual model has been instantiated in two specific case uses, showing the provided abstraction level and the feasibility of the proposal to build reusable, extensible and adaptable health systems. The proposal can evolve by exploiting other scenarios and contexts.