Humans are considered to be the most intelligent species on the mother earth and are inherently more health conscious. Since Centuries mankind has discovered various proven healthcare systems. To automate the process and predict diseases more accurately machine learning methods are gaining popularity in research community. Machine Learning methods facilitate development of the intelligence into a machine, so that it can perform better in the future using the learned experience. Machine learning methods application on electronic health record dataset could provide valuable information and predication of health risks.The aim of this research review paper are four-fold: i) serve as a guideline for researchers who are new to machine learning area and want to contribute to it, ii) provide state-of-the-art survey of machine learning, iii) application of machine learning techniques in the health prediction, and iv) provides further research directions required into health prediction system using machine learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.