2013 Fourth International Conference on Digital Manufacturing &Amp; Automation 2013
DOI: 10.1109/icdma.2013.169
|View full text |Cite
|
Sign up to set email alerts
|

Intelligent Identification of Bearing Faults Using Time Domain Features

Abstract: FRQVLVWV FRQVLVWV FRQVLVWV RI RI RI RI ILYH ILYH ILYH ILYH LQSXW LQSXW LQSXW LQSXW QRGHV QRGHV QRGHV QRGHV RQH RQH RQH RQH KLGGHQ KLGGHQ KLGGHQ KLGGHQ OD\HU OD\HU OD\HU OD\HU ZLWK ZLWK ZLWK ZLWK ILYH ILYH ILYH ILYH QRGHV QRGHV QRGHV QRGHV DQG DQG DQG DQG IRXU IRXU IRXU IRXU RXWSXW RXWSXW RXWSXW RXWSXW QRGHV QRGHV QRGHV QRGHV (DFK (DFK (DFK (DFK RI RI RI RI ILYH ILYH ILYH ILYH LQSXW LQSXW LQSXW LQSXW QRGHV QRGHV QRGHV QRGHV UHSUHVHQWV UHSUHVHQWV UHSUHVHQWV UHSUHVHQWV URRW URRW URRW URRW PHDQ PHDQ PHDQ PHDQ VTXD… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2016
2016
2024
2024

Publication Types

Select...
3
1
1

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(1 citation statement)
references
References 12 publications
0
1
0
Order By: Relevance
“…Patel and Giri [13] extracted 15 statistical features and classified them using a neural network (NN) and random forest (RF) classifier. Also, Chenxi et al [14] used five-time domain features to classify faults using vibration data. The researchers attempted to identify the bearing fault classification using the Fast Fourier transform (FFT) and power spectral density.…”
Section: Introductionmentioning
confidence: 99%
“…Patel and Giri [13] extracted 15 statistical features and classified them using a neural network (NN) and random forest (RF) classifier. Also, Chenxi et al [14] used five-time domain features to classify faults using vibration data. The researchers attempted to identify the bearing fault classification using the Fast Fourier transform (FFT) and power spectral density.…”
Section: Introductionmentioning
confidence: 99%