Dynamic learning environment has emerged as a powerful platform in a modern e-learning system. The learning situation that constantly changing has forced the learning platform to adapt and personalize its learning resources for students. Evidence suggested that adaptation and personalization of e-learning systems (APLS) can be achieved by utilizing learner modeling, domain modeling, and instructional modeling. In the literature of APLS, questions have been raised about the role of individual characteristics that are relevant for adaptation. With several options, a new problem has been raised where the attributes of students in APLS often overlap and are not related between studies. Therefore, this study proposed a list of learner model attributes in dynamic learning to support adaptation and personalization. The study was conducted by exploring concepts from the literature selected based on the best criteria. Then, we described the results of important concepts in student modeling and provided definitions and examples of data values that researchers have used. Besides, we also discussed the implementation of the selected learner model in providing adaptation in dynamic learning.