There has been an explosion of interests in using flexible transparent electrodes for nextgeneration flexible electronics, such as touch panels, flexible lighting, flexible solar cells, and wearable sensors. Silver nanowires (AgNWs) are a promising material for flexible transparent electrodes due to high electrical conductivity, optical transparency and mechanical flexibility. Despite many efforts in this field, the optoelectronic performance of AgNW networks is still not sufficient to replace the present material, indium tin oxide (ITO), due to the high junction resistance. Also, the environmental stability and the mechanical properties need enhancement for future commercialization. Many studies have attempted to overcome such problems by tuning the AgNW synthesis and optimizing the film-forming process. In this chapter, we survey recent progresses of AgNWs in flexible electronics by describing both fabrication and applications of flexible transparent AgNW electrodes. The synthesis of AgNWs and the fabrication of AgNW electrodes will be demonstrated, and the performance enhanced by various methods to suit different applications will be also discussed. Finally, technical challenges and future trends are presented for the application of transparent electrodes in flexible electronics.