Understanding the influence of fertilizer on soil quality is vital to agricultural management, yet there are few studies, particularly in black soil. In this study, soils under various treatments, namely no fertilizer, bio-organic + humic acid, bio-organic + chemical, and chemical fertilizer, were sampled to identify their major physiochemical properties, and to investigate the fungal community structure using environmental sequencing techniques. Physiochemical properties and fungal community structure were examined at four important stages of the maize life cycle: seedling, jointing, heading period, and maturity. We found that chemical fertilizer in the mature stage increased the soil available phosphorous (AP) content. Organic matter content was greatly affected by bio-organic + chemical fertilizer during the mature stage. Bio-organic + humic acid significantly increased soil phosphatase activity in maturing maize, whilst chemical fertilizers reduced invertase activity. Taken together, our results clearly illustrated that bio-organic + humic and chemical fertilization indirectly alter fungal community structure via changing soil properties (especially AP). Chemical fertilizer markedly heightened the AP content, thereby decreasing specific fungal taxa, particularly Guehomyces. OM was of positive connection with bio-organic + humic acid and Mortierella abundance, respectively, through RDA analysis, which are in agreement with our result that bio-organic + humic acid fertilization to some extent increased Mortierella abundance. Additionally, bio-organic + humic acid decreased the abundance of Fusarium and Humicola, suggesting that bio-organic + humic acid possibly could help control crop disease. These results help to inform our fundamental understanding of the interactions between fertilizers, soil properties, and fungal communities.