This paper describes a low-cost cable-driven manipulator robot for lower limb rehabilitation, designed for the population with gait impairments, such as those with cerebral palsy or stroke. The robot is composed by a fixed base and a mobile platform (orthoses) that can be connected to one cable, or at most six, and can perform the individual movements of the hip, the knee, and the ankle. It starts with a review of the different mechanical systems developed and applied for lower limb rehabilitation. After, the proposed structure is detailed. Finally, the numerical and experimental tests of the cable-driven parallel structure for lower limb rehabilitation movements are outlined, showing the viability of the proposed structure.