Phycobilin lyases covalently attach phycobilin chromophores to apo-phycobiliproteins (PBPs). Genome analyses of the unicellular, marine cyanobacterium Synechococcus sp. PCC 7002 identified three genes, denoted cpcS-I, cpcU, and cpcV, that were possible candidates to encode phycocyanobilin (PCB) lyases. Single and double mutant strains for cpcS-I and cpcU exhibited slower growth rates, reduced PBP levels, and impaired assembly of phycobilisomes, but a cpcV mutant had no discernable phenotype. A cpcS-I cpcU cpcT triple mutant was nearly devoid of PBP. SDS-PAGE and mass spectrometry demonstrated that the cpcS-I and cpcU mutants produced an altered form of the phycocyanin (PC)  subunit, which had a mass ϳ588 Da smaller than the wild-type protein. Some free PCB (mass ؍ 588 Da) was tentatively detected in the phycobilisome fraction purified from the mutants. The modified PC from the cpcS-I, cpcU, and cpcS-I cpcU mutant strains was purified, and biochemical analyses showed that Cys-153 of CpcB carried a PCB chromophore but Cys-82 did not. These results show that both CpcS-I and CpcU are required for covalent attachment of PCB to Cys-82 of the PC  subunit in this cyanobacterium. Suggesting that CpcS-I and CpcU are also required for attachment of PCB to allophycocyanin subunits in vivo, allophycocyanin levels were significantly reduced in all but the CpcV-less strain. These conclusions have been validated by in vitro experiments described in the accompanying report (Saunée, N. A., Williams, S. R., Bryant, D. A., and Schluchter, W. M. (2008) J. Biol. Chem. 283, 7513-7522). We conclude that the maturation of PBP in vivo depends on three PCB lyases: CpcE-CpcF, CpcS-I-CpcU, and CpcT.