The marine cyanobacterium Synechococcus is the second most abundant phytoplanktonic organism in the world's oceans. The ubiquity of this genus is in large part due to its use of a diverse set of photosynthetic light-harvesting pigments called phycobiliproteins, which allow it to efficiently exploit a wide range of light colors. Here we uncover a pivotal molecular mechanism underpinning a widespread response among marine Synechococcus cells known as "type IV chromatic acclimation" (CA4). During this process, the pigmentation of the two main phycobiliproteins of this organism, phycoerythrins I and II, is reversibly modified to match changes in the ambient light color so as to maximize photon capture for photosynthesis. CA4 involves the replacement of three molecules of the green light-absorbing chromophore phycoerythrobilin with an equivalent number of the blue light-absorbing chromophore phycourobilin when cells are shifted from green to blue light, and the reverse after a shift from blue to green light. We have identified and characterized MpeZ, an enzyme critical for CA4 in marine Synechococcus. MpeZ attaches phycoerythrobilin to cysteine-83 of the α-subunit of phycoerythrin II and isomerizes it to phycourobilin. mpeZ RNA is six times more abundant in blue light, suggesting that its proper regulation is critical for CA4. Furthermore, mpeZ mutants fail to normally acclimate in blue light. These findings provide insights into the molecular mechanisms controlling an ecologically important photosynthetic process and identify a unique class of phycoerythrin lyase/isomerases, which will further expand the already widespread use of phycoerythrin in biotechnology and cell biology applications.light regulation | marine cyanobacteria | phycobilisomes | fluorescence | liquid chromatography-mass spectrometry
The petH gene encoding ferredoxin-NADP+ oxidoreductase (FNR) was cloned and sequenced from the cyanobacterium Synechococcus sp. PCC 7002. The deduced amino acid sequence of the FNR protein (402 amino acids) is approximately 110 amino acids longer at the N-terminus than FNR proteins which have been characterized from other cyanobacteria. N-Terminal amino acid sequence analysis of the protein confirms the assigned translational start codon and shows that the initiator methionine is not removed. Mapping of the petH transcript by primer extension demonstrates that transcription initiates 112-114 bp upstream from this translational initiation site. Analyses of the mature protein from whole-cell extracts by polyacrylamide gel electrophoresis and subsequent immunoblot analysis with anti-spinach FNR antibodies revealed two distinct forms of the mature protein; both had masses of approximately 45 kDa, corresponding to the predicted molecular mass deduced from the nucleotide sequence data. Analyses by Triton X-114 phase-partitioning indicate that one form of the protein is found exclusively in the cytosol and is hydrophilic when extracts are made at low ionic strength while the second form of the protein is hydrophobic and is tightly associated with the total membrane fraction. Hydroxylamine treatment converted a portion of the membrane-associated, hydrophobic form into a protein which then behaved like the hydrophilic form. These results suggest that a portion of the FNR pool may be acylated via an ester linkage to aid in attachment of the protein to the membranes. A computer database search revealed that the N-terminal extension of the FNR protein was 78% similar to the 9-kDa phycocyanin-associated linker protein CpcD, a structural component of the phycobilisomes. It is hypothesized that the N-terminal domain of FNR serves to localize the protein near the thylakoid membrane by docking FNR at the extremities of the peripheral rods of the phycobilisomes. Consistent with this notion, FNR is present in the phycobilisomes of Synechococcus sp. PCC 7002. Immunoblotting analyses of other cyanobacterial species showed that in all cases the major proteins recognized by the spinach FNR antibodies had masses of 42-55 kDa and were much larger than previously reported. Smaller cross-reactive species in the mass range 24-35 kDa appear to be proteolytic degradation products.
Abstract:The purpose of this research was to evaluate the performance of existing spectral band ratio algorithms and develop a novel algorithm to quantify phycocyanin (PC) in cyanobacteria using hyperspectral remotely-sensed data. We performed four spectroscopic experiments on two different laboratory cultured cyanobacterial species and found that the existing band ratio algorithms are highly sensitive to chlorophylls, making them inaccurate in predicting cyanobacterial abundance in the presence of other chlorophyll-containing organisms. We present a novel spectral band ratio algorithm using 700 and 600 nm that is much less sensitive to the presence of chlorophyll.
The psaI and psaL genes were characterized from the cyanobacterium Synechococcus sp. strain PCC 7002. The gene organization was different from that reported for other cyanobacteria with psaI occurring upstream and being divergently transcribed from the psaL gene. Mutants lacking PsaI or PsaL were generated by interposon mutagenesis and characterized physiologically and biochemically. Mutant strains PR6307 (delta psaI), PR6308 (psaI-) and PR6309 (psaL-) had doubling times similar to that of the wild type under both high- and low-intensity white light, but all grew more slowly than the wild type in green light. Only monomeric photosystem I (PS I) complexes could be isolated from each mutant strain when Triton X-100 was used to solubilize thylakoid membranes; however, approximately 10% of the PS I complexes from the psaI mutants, but not the psaL mutant, could be isolated as trimers when n-dodecyl beta-D-maltoside was used. Compositional analyses of the mutant PS I complexes indicate that the presence of PsaL is required for trimer formation or stabilization and that PsaI plays a role in stabilizing the binding of both PsaL and PsaM to the PS I complex. Strain PR6309 (psaL-) was capable of performing a state 2 to state 1 transition approximately three times more rapidly than the wild type. Because the monomeric PS I complexes of this mutant should be capable of diffusing more rapidly than trimeric complexes, these data suggest that PS I complexes rather than phycobilisomes might move during state transitions. A "mobile-PS I" model for state transitions that incorporates these ideas is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.