Abstract:The purpose of this research was to evaluate the performance of existing spectral band ratio algorithms and develop a novel algorithm to quantify phycocyanin (PC) in cyanobacteria using hyperspectral remotely-sensed data. We performed four spectroscopic experiments on two different laboratory cultured cyanobacterial species and found that the existing band ratio algorithms are highly sensitive to chlorophylls, making them inaccurate in predicting cyanobacterial abundance in the presence of other chlorophyll-containing organisms. We present a novel spectral band ratio algorithm using 700 and 600 nm that is much less sensitive to the presence of chlorophyll.
Abstract:We evaluated the accuracy and sensitivity of six previously published reflectance based algorithms to retrieve Phycocyanin (PC) concentration in inland waters. We used field radiometric and pigment data obtained from two study sites located in the United States and Brazil. All the algorithms targeted the PC absorption feature observed in the water reflectance spectra between 600 and 625 nm. We evaluated the influence of chlorophyll-a (chl-a) absorption on the performance of these algorithms in two contrasting environments with very low and very high cyanobacteria content. All algorithms performed well in low to moderate PC concentrations and showed signs of saturation or decreased sensitivity for high PC concentration with a nonlinear trend. MM09 was found to be the most accurate algorithm overall with a RMSE of 15.675%. We also evaluated the use of these algorithms with the simulated spectral bands of two hyperspectral space borne sensors including Hyperion and Compact High-Resolution Imaging Spectrometer (CHRIS) and a hyperspectral air borne sensor, Hyperspectral Infrared Imager (HyspIRI). Results showed that the sensitivity for chl-a of PC retrieval algorithms for Hyperion simulated data were less noticable than using the spectral bands of CHRIS; HyspIRI results show that SC00 could be used for this sensor with low chl-a influence. This review of reflectance OPEN ACCESS Remote Sens. 2013, 5 4775 based algorithms can be used to select the optimal approach in studies involving cyanobacteria monitoring through optical remote sensing techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.