Late embryogenesis abundant (LEA) proteins are important players in the management of responses to stressful conditions, such as drought, high salinity, and changes in temperature. Many LEA proteins do not have defined three-dimensional structures, so they are intrinsically disordered proteins (IDPs) and are often highly hydrophilic. Although LEA-like sequences have been identified in bacterial genomes, the functions of bacterial LEA proteins have been studied only recently. Sequence analysis of outer membrane interleukin receptor I (BilRI) from the oral pathogen
Aggregatibacter actinomycetemcomitans
indicated that it shared sequence similarity with group 3/3b/4 LEA proteins. Comprehensive nuclearcgq
magnetic resonance (NMR) studies confirmed its IDP nature, and expression studies in
A. actinomycetemcomitans
harboring a red fluorescence reporter protein-encoding gene revealed that
bilRI
promoter expression was increased at decreased temperatures. The amino acid backbone of BilRI did not stimulate either the production of reactive oxygen species from human leukocytes or the production of interleukin-6 from human macrophages. Moreover, BilRI-specific IgG antibodies could not be detected in the sera of
A. actinomycetemcomitans
culture-positive periodontitis patients. Since the
bilRI
gene is located near genes involved in natural competence (i.e., genes associated with the uptake of extracellular (eDNA) and its incorporation into the genome), we also investigated the role of BilRI in these events. Compared to wild-type cells, the Δ
bilRI
mutants showed a lower transformation efficiency, which indicates either a direct or indirect role in natural competence. In conclusion,
A. actinomycetemcomitans
might express BilRI, especially outside the host, to survive under stressful conditions and improve its transmission potential.