The impact of oral commensal and pathogenic bacteria on peri‐implant mucosa is not well understood, despite the high prevalence of peri‐implant infections. Hence, we investigated responses of the peri‐implant mucosa to Streptococcus oralis or Aggregatibacter actinomycetemcomitans biofilms using a novel in vitro peri‐implant mucosa‐biofilm model. Our 3D model combined three components, organotypic oral mucosa, implant material, and oral biofilm, with structural assembly close to native situation. S. oralis induced a protective stress response in the peri‐implant mucosa through upregulation of heat shock protein (HSP70) genes. Attenuated inflammatory response was indicated by reduced cytokine levels of interleukin‐6 (IL‐6), interleukin‐8 (CXCL8), and monocyte chemoattractant protein‐1 (CCL2). The inflammatory balance was preserved through increased levels of tumor necrosis factor‐alpha (TNF‐α). A. actinomycetemcomitans induced downregulation of genes important for cell survival and host inflammatory response. The reduced cytokine levels of chemokine ligand 1 (CXCL1), CXCL8, and CCL2 also indicated a diminished inflammatory response. The induced immune balance by S. oralis may support oral health, whereas the reduced inflammatory response to A. actinomycetemcomitans may provide colonisation advantage and facilitate later tissue invasion. The comprehensive characterisation of peri‐implant mucosa‐biofilm interactions using our 3D model can provide new knowledge to improve strategies for prevention and therapy of peri‐implant disease.
Protein replacement therapy (PRT) has been applied to treat severe monogenetic/metabolic disorders characterized by a protein deficiency. In disorders where an intracellular protein is missing, PRT is not easily feasible due to the inability of proteins to cross the cell membrane. Instead, gene therapy has been applied, although still with limited success. β-Thalassemias are severe congenital hemoglobinopathies, characterized by deficiency or reduced production of the adult β-globin chain. The resulting imbalance of α-/β-globin chains of adult hemoglobin (α 2 β 2 ) leads to precipitation of unpaired α-globin chains and, eventually, to defective erythropoiesis. Since protein transduction domain (PTD) technology has emerged as a promising therapeutic approach, we produced a human recombinant β-globin chain in fusion with the TAT peptide and successfully transduced it into human proerythroid K-562 cells, deficient in mature β-globin chain. Notably, the produced human recombinant β-globin chain without the TAT peptide, used as internal negative control, failed to be transduced into K-562 cells under similar conditions. In silico studies complemented by SDS−PAGE, Western blotting, co-immunoprecipitation and LC−MS/MS analysis indicated that the transduced recombinant fusion TAT−β-globin protein interacts with the endogenous native α-like globins to form hemoglobin α 2 β 2 -like tetramers to a limited extent. Our findings provide evidence that recombinant TAT−β-globin is transmissible into proerythroid K-562 cells and can be potentially considered as an alternative protein therapeutic approach for β-thalassemias.
Human gingival epithelial cells (HGEps) and fibroblasts (HGFs) are the main cell types in peri-implant soft tissue. HGEps are constantly exposed to bacteria, but HGFs are protected by connective tissue as long as the mucosa–implant seal is intact. Streptococcus oralis is one of the commensal bacteria, is highly abundant at healthy implant sites, and might modulate soft tissue cells—as has been described for other streptococci. We have therefore investigated the effects of the S. oralis biofilm on HGEps and HGFs. HGEps or HGFs were grown separately on titanium disks and responded to challenge with S. oralis biofilm. HGFs were severely damaged after 4 h, exhibiting transcriptional inflammatory and stress responses. In contrast, challenge with S. oralis only induced a mild transcriptional inflammatory response in HGEps, without cellular damage. HGFs were more susceptible to the S. oralis biofilm than HGEps. The pro-inflammatory interleukin 6 (IL-6) was attenuated in HGFs, as was interleukin 8 (CXCL8) in HGEps. This indicates that S. oralis can actively protect tissue. In conclusion, commensal biofilms can promote homeostatic tissue protection, but only if the implant–mucosa interface is intact and HGFs are not directly exposed.
Infections of medical implants caused by bacterial biofilms are a major clinical problem. Bacterial colonization is predicted to be prevented by alkaline magnesium surfaces. However, in experimental animal studies, magnesium implants prolonged infections. The reason for this peculiarity likely lies within the-still largely hypothetical-mechanism by which infection arises. Investigating subcutaneous magnesium implants infected with bioluminescent Pseudomonas aeruginosa via in vivo imaging, we found that the rate of implant infections was critically dependent on a surprisingly high quantity of injected bacteria. At high inocula, bacteria were antibiotic-refractory immediately after infection. High cell densities are known to limit nutrient availability, restricting proliferation and trigger quorum sensing which could both contribute to the rapid initial resistance. We propose that gas bubbles such as those formed during magnesium corrosion, can then act as interfaces that support biofilm formation and permit long-term survival. This model could provide an explanation for the apparent ineffectiveness of innovative contactdependent bactericidal implant surfaces in patients. In addition, the model points toward air bubbles in tissue, either by inclusion during surgery or by spontaneous gas bubble formation later on, could constitute a key risk factor for clinical implant infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.