The structure, isomerization pathways and vibrational spectra of the important N-hydroxyurea (HU) molecule were studied by matrix isolation FT-IR spectroscopy and molecular orbital calculations undertaken at the MP2/6-311++G(2d,2p) level of theory. In agreement with theoretical predictions, 1Ea represents the most stable keto isomer in the gas-phase, being the dominant species trapped in argon matrices, while the 1Za isomer also contributes to the spectrum of isolated HU molecules. According to the calculated abundance values at the temperature of evaporation of the compound (393 K), the 1Ea and 1Za isomers together with a small contribution of 1Eb are expected to appear in the experimental spectra. Since the barrier for interconversion 1Ea↔ 1Eb is only ∼2 kJ mol(-1), these two isomers are in equilibrium in the matrices and, at low temperature, the population of the less stable 1Eb form is too small to be observed. Full assignment of the observed spectra of N-hydroxyurea and its deuterium analogue was undertaken on the basis of comparison with theoretical data.