Voltage-gated sodium channels (Navs) play crucial roles in excitable cells. Although vertebrate Nav function has been extensively studied, the detailed structural basis for voltage-dependent gating mechanisms remain obscure. We have assessed the structural changes of the Nav voltage sensor domain using lanthanide-based resonance energy transfer (LRET) between the rat skeletal muscle voltage-gated sodium channel (Nav1.4) and fluorescently labeled Nav1.4-targeting toxins. We generated donor constructs with genetically encoded lanthanide-binding tags (LBTs) inserted at the extracellular end of the S4 segment of each domain (with a single LBT per construct). Three different Bodipy-labeled, Nav1.4-targeting toxins were synthesized as acceptors: β-scorpion toxin (Ts1)-Bodipy, KIIIA-Bodipy, and GIIIA-Bodipy analogs. Functional Nav-LBT channels expressed in Xenopus oocytes were voltage-clamped, and distinct LRET signals were obtained in the resting and slow inactivated states. Intramolecular distances computed from the LRET signals define a geometrical map of Nav1.4 with the bound toxins, and reveal voltage-dependent structural changes related to channel gating.V oltage-gated sodium channels (Navs) play an essential role in the generation and propagation of action potentials in excitable cells (1). Eukaryotic Navs are composed of a poreforming α subunit and auxiliary β subunits. The α subunit is a large single-polypeptide chain organized in four different domains (DI-DIV), each of which has a voltage-sensing domain (VSD; S1-S4 segments) and a pore-forming domain (S5-S6 segments). Each domain has a different amino acid composition, pointing to some level of functional specialization. Site-directed fluorimetry shows that the VSDs in DI, DII, and DIII of the rat skeletal muscle voltage-gated sodium channel (Nav1.4) are activated by depolarization faster than in DIV (2). From this observation, it has been hypothesized that DI-III VSDs control the pore opening of the mammalian Nav, whereas the DIV VSD governs its fast inactivation (2-5).Although mammalian Nav function has been studied comprehensively, the precise structural basis for the gating mechanisms has not been fully elucidated. The crystal structures of several prokaryotic Navs have been solved recently; however, in contrast to the mammalian Navs, they are homotetrameric, and thus structurally more closely related to the organization of voltage-gated potassium channels (Kvs) (6-9). The structure of a human L-type voltage-gated calcium channel type 1.1 (Cav1.1), which is a large single polypeptide composed of four different domains similar to mammalian Navs, has been resolved using cryoelectron microscopy (10, 11). However, functional studies have shown that gating mechanisms of mammalian Cav channels are indeed different from gating mechanisms in mammalian Navs (12). Furthermore, such structural studies only provide static snapshots of the channels in one of many possible conformational states. Therefore, techniques that provide dynamic structural information are nee...