Voltage-gated sodium channels are important in initiating and propagating nerve impulses in various tissues, including cardiac muscle, skeletal muscle, the brain, and the peripheral nerves. Hyperexcitability of these channels leads to such disorders as cardiac arrhythmias
Urotensin I, purified from extracts of the urophysis of a teleost fish (Catostomus commersoni), exhibits potent hypotensive activity (mammals and birds) and corticotropin-releasing activity (both fish and mammals). The primary structure of this 41-residue peptide was determined to be H-Asn-Asp-Asp-Pro-Pro-Ile-Ser-Ile-Asp-Leu-Thr-Phe-His-Leu-Leu-Arg-Asn-Met-Ile-Glu- Met-Ala-Arg-Ile-Glu-Asn-Glu-Arg-Glu-Gln-Ala-Gly-Leu-Asn-Arg-Lys-Tyr-Leu-Asp-Glu -Val-NH2. Extraction with 0.1N HCl at 100 degrees C cleaves the amino-terminal tripeptide, yeilding a fully active analog, urotensin I(4-41). The amino acid sequence was confirmed by measuring the biological activity of synthetic urotensin I(4-41). Urotensin I exhibits a striking sequence homology with ovine corticotropin-releasing factor and with frog sauvagine. These three peptides exhibit similar activities in biological test systems.
The first μ-conotoxin studied, μCTX GIIIA, preferentially blocked voltage-gated skeletal muscle sodium channels, Na(v)1.4, while μCTX PIIIA was the first to show significant blocking action against neuronal voltage-gated sodium channels. PIIIA shares >60% sequence identity with the well-studied GIIIA, and both toxins preferentially block the skeletal muscle sodium channel isoform. Two important features of blocking by wild-type GIIIA are the toxin's high binding affinity and the completeness of block of a single channel by a bound toxin molecule. With GIIIA, neutral replacement of the critical residue, Arg-13, allows a residual single-channel current (~30% of the unblocked, unitary amplitude) when the mutant toxin is bound to the channel and reduces the binding affinity of the toxin for Na(v)1.4 (~100-fold) [Becker, S., et al. (1992) Biochemistry 31, 8229-8238]. The homologous residue in PIIIA, Arg-14, is also essential for completeness of block but less important in the toxin's binding affinity (~55% residual current and ~11-fold decrease in affinity when substituted with alanine or glutamine). The weakened dominance of this key arginine in PIIIA is also seen in the fact that there is not just one (R13 in GIIIA) but three basic residues (R12, R14, and K17) for which individual neutral replacement enables a substantial residual current through the bound channel. We suggest that, despite a high degree of sequence conservation between GIIIA and PIIIA, the weaker dependence of PIIIA's action on its key arginine and the presence of a nonconserved histidine near the C-terminus may contribute to the greater promiscuity of its interactions with different sodium channel isoforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.