This study focused on the deleterious effect of anthracene (ANT) and role of a surfactant, Triton (TX-100), in recovery from inhibitory effect of ANT. Fast chlorophyll (Chl) fluorescence measurements were performed in wheat plants. Results revealed that maximum quantum yield of PSII, area over the fluorescence curve, performance index (PI), and reaction centre density was negatively affected by ANT treatment. The effects on PSII quantum efficiency, reaction centre density, absorption, and trapping were partially recovered by TX-100. PSII heterogeneity in terms of PSII antenna heterogeneity, corresponding to PSII α, β, and γ centres, and reducing side, corresponding to Q B -reducing and Q B -nonreducing centres, were also investigated. The damage caused by ANT to PSII antenna heterogeneity was recovered almost by 100% owing to TX-100.