DeclarationThis work has not previously been accepted in substance for any degree and is not concurrently being submitted in candidature for any degree.
Signed:Date:
Statement 1This thesis is the result of my own investigations, except where otherwise stated. Other sources are acknowledged by giving explicit references. A bibliography is appended.
Signed:Date:
Statement 2I hereby give consent for my thesis, if accepted, to be available for photocopying and interlibrary loan, and for the title and summary to be made available to outside organisations.
SummaryA queuing model is developed for the neurological rehabilitation unit at Rookwood Hospital in Cardiff. Arrivals at the queuing system are represented by patient referrals and service is represented by patient length of stay (typically five months). Since there are often delays to discharge, length of stay is partitioned into two parts: admission until date ready for discharge (modelled by Coxian phase-type distribution) and date ready for discharge until ultimate discharge (modelled by exponential distribution). The attributes of patients (such as age, gender, diagnosis etc) are taken into account since they affect these distributions. A computer program has been developed to solve this multi-server (21 bed) queuing system to produce steady-state probabilities and various performance measures.However, early on in the project it became apparent that the intensity of treatment received by patients has an effect on the time, from admission, until they are ready for discharge. That is, the service rates of the Coxian distribution are dependent on the amount of therapy received over time. This directly relates to the amount of treatment allocated in the weekly timetables. For the physiotherapy department, these take about eight hours to produce each week by hand. In order to ask the valuable what-if questions that relate to treatment intensity, it is therefore necessary to produce an automated scheduling program that replicates the manual assignment of therapy. The quality of timetables produced using this program was, in fact, considerably better than its alternative and so replaced the by-hand approach. Other benefits are more clinical time (since less employee input is required) and a convenient output of data and performance measures that are required for audit purposes.Once the model is constructed a number of relevant hypothetical scenarios are considered.Such as, what if delays to discharge are reduced by 50%? Also, through the scheduling program, the effect of changes to the composition of staff or therapy sessions can be evaluated, for example, what if the number of therapists is increased by one third? The effects of such measures are analysed by studying performance measures (such as throughput and occupancy) and the associated costs.