It is accepted that only three elements are ferromagnetic at room temperature, the transition metals iron, cobalt and nickel. The Stoner criterion explains why, for example, iron is ferromagnetic but manganese is not, even though both elements have an unfilled 3d shell and are adjacent in the periodic table: the product of the density of states with the exchange integral must be greater than unity for spontaneous ordering to emerge.1,2 Here, we demonstrate that it is possible to alter the electronic states of nonferromagnetic materials, such as diamagnetic copper and paramagnetic manganese, in 2 order to drive them ferromagnetic at room temperature. This remarkable effect is achieved via interfaces between metallic thin films and C 60 molecular layers. The emergent ferromagnetic state can exist over several layers of the metal before being quenched at large sample thicknesses by the material's bulk properties. While the induced magnetisation is easily measurable by magnetometry, low energy muon spin spectroscopy 3 provides insight into its magnetic distribution by studying the depolarisation process of low energy muons implanted in the sample. This technique indicates localized spin-ordered states at and close to the metallo-molecular interface.Density functional theory simulations suggest a mechanism based on magnetic hardening of the metal atoms due to electron transfer. 4,5 This opens a path for the exploitation of molecular coupling to design magnetic metamaterials using abundant, non-toxic elements such as organic semiconductors. Charge transfer at molecular interfaces can then be used to control spin polarisation or magnetisation, with far reaching consequences in the design of devices for electronic, power or computing applications. 6,7 Multifunctional materials with the spin degree of freedom such as multiferroics, magnetic semiconductors and molecular magnets have all aroused huge interest as potentially transformative components in quantum technologies. [8][9][10][11][12] Strategies used to bring magnetic ordering to these materials typically rely on the inclusion of magnetic transition metals, heavy elements with a large atomic moment or rare earths. In thin film structures, proximity effects and coupling at interfaces play an essential role. 13,14 This is especially the case for molecular spintronics, 15,16 where organic thin films grown on copper have demonstrated spin filtering.
17The organic magnetic coupling can propagate for long distances in systems such as nanoscale vortex-like configurations or nanoskyrmion lattices.
183We choose C 60 as a model molecule due to its structural simplicity and robustness as well as its high electron affinity. C 60 /transition metal complexes exhibit strong interfacial coupling between metal 3d z electrons and molecular π-bonded p electrons. The potential created by the mismatch of molecular and metal work functions leads to a partial filling of the interface states. [19][20][21] Other molecules with close electron affinity and the potential for 3d z /p coupling ...