Li-rich Mn-based cathode materials (LLOs) are often faced with problems such as low initial Coulombic efficiency (ICE), limited rate performance, voltage decay, and structural instability. Addressing these problems with a single approach is challenging. To overcome these limitations, we developed an LLO with surface functionalization using a simple fabrication method. This two-step process involved a liquid-stage NaBF 4 treatment followed by an in situ chemical reaction during sintering. This reaction led to the creation of oxygen vacancies (O V ), spinel structures, and doping with Na at the Li site, B at the tetrahedral interstitial spaces of O in both the transition-metal (TM) layer and Li layers as well as the octahedral interstices in the TM layer, and F at the O site. We have carried out a thorough study and employed density functional theory calculations to reveal the hidden mechanisms. The treatment not only increases the electrical conductivity but also changes the oxygen charge environment and inhibits lattice oxygen activity. Surprisingly, the B−O bond is so strong that it prevents the migration of TM within the tetrahedral interstitial spaces of O in both the TM and Li layers, hence stabilizing its structure. This bonding interaction strengthens the transition of the TM 3d and O 2p states to lower energy levels, thus causing an increase in the redox potentials. Hence, a rise in the operating voltage occurs. Of special importance, this therapy dramatically increases the ICE to 90.29% and keeps a specified capacity of 203.3 mAh/g after 100 cycles at 1C, which is an excellent capacity retention of 89.94%. This study introduces ideas and methods to tackle the challenges associated with LLOs in batteries. It also provides compelling evidence for the development of high-energy-density Li-ion batteries.