Abstract-In heterogeneous cellular networks (HCNs), the interference received at a user is correlated over time slots since it comes from the same set of randomly located BSs. This results in the correlations of link successes, thus affecting network performance. Under the assumptions of a K-tier Poisson network, strongest-candidate based BS association, and independent Rayleigh fading, we first quantify the correlation coefficients of interference. We observe that the interference correlation is independent of the number of tiers, BS density, SIR threshold, and transmit power. Then, we study the correlations of link successes in terms of the joint success probability over multiple time slots. We show that the joint success probability is decided by the success probability in a single time slot and a diversity polynomial, which represents the temporal interference correlation. Moreover, the parameters of HCNs have an important influence on the joint success probability by affecting the success probability in a single time slot. Particularly, we obtain the condition under which the joint success probability increases with the BS density and transmit power. We further show that the conditional success probability given prior successes only depends on the path loss exponent and the number of time slots.