In mobile networks, distance variations caused by node mobility generate fluctuations in the channel gains. Such fluctuations can be treated as another type of fading besides multi-path effects. In this paper, the interference statistics in mobile random networks are characterized by mapping the distance variations of mobile nodes to the channel gain fluctuations. The network performance is evaluated in terms of the outage probability. Compared to a static network, the interference distribution in a single snapshot does not change under uniform mobility models, but random waypoint mobility increases the interference. Furthermore, due to the correlation of the node locations, the interference and outage are temporally and spatially correlated. We quantify the temporal correlation of the interference and outage in mobile Poisson networks in terms of the correlation coefficient and conditional outage probability, respectively. The results show that it is essential that routing, MAC, and retransmission schemes be smart (i.e,. correlationaware) to avoid bursts of transmission failures.
Background Exosomes are lipid-bilayer enclosed nano-sized vesicles that transfer functional cellular proteins, mRNA and miRNAs. Mesenchymal stem cells (MSCs) derived exosomes have been demonstrated to prevent memory deficits in the animal model of Alzheimer’s disease (AD). However, the intravenously injected exosomes could be abundantly tracked in other organs except for the targeted regions in the brain. Here, we proposed the use of central nervous system-specific rabies viral glycoprotein (RVG) peptide to target intravenously-infused exosomes derived from MSCs (MSC-Exo) to the brain of transgenic APP/PS1 mice. MSC-Exo were conjugated with RVG through a DOPE-NHS linker. Results RVG-tagged MSC-Exo exhibited improved targeting to the cortex and hippocampus after being administered intravenously. Compared with the group administered MSC-Exo, in the group administered RVG-conjugated MSC-Exo (MSC-RVG-Exo) plaque deposition and Aβ levels were sharply decreased and activation of astrocytes was obviously reduced. The brain targeted exosomes derived from MSCs was better than unmodified exosomes to improve cognitive function in APP/PS1 mice according to Morris water maze test. Additionally, although MSC-Exo injected intravenously reduced the expression of pro-inflammatory mediators TNF-α, IL-β, and IL-6, but the changes of anti-inflammatory factors IL-10 and IL-13 were not obvious. However, administration of MSC-RVG-Exo significantly reduced the levels of TNF-α, IL-β, and IL-6 while significantly raised the levels of IL-10, IL-4 and IL-13. Conclusions Taken together, our results demonstrated a novel method for increasing delivery of exosomes for treatment of AD. By targeting exosomes to the cortex and hippocampus of AD mouse, there was a significant improvement in learning and memory capabilities with reduced plaque deposition and Aβ levels, and normalized levels of inflammatory cytokines. Electronic supplementary material The online version of this article (10.1186/s12979-019-0150-2) contains supplementary material, which is available to authorized users.
For communication between two neighboring nodes in wireless networks, the local delay is defined as the time it takes a node to successfully transmit a packet. Previous research focuses on the local delay in static or infinitely mobile Poisson networks with ALOHA. In this paper, we extend the local delay results to Poisson networks with finite mobility. The results obtained show that mobility helps reduce the local delay. Bounds of the local delay in mobile Poisson networks are derived for different mobility and transmission models. The phase transition that marks the jump of the local delay from finite to infinite is also characterized.
Objective: To examine the role of high-fat and high-sugar (HFHS) diet-induced oxidative stress, which is a risk factor for various diseases, in premature ovarian failure (POF). Materials and methods:Ovarian granulosa cells (OGCs) were isolated from mice and cultured in medium supplemented with HFHS and poly (lactic-co-glycolic acid) (PLGA)-cross-linked miR-146b-5p nanoparticles (miR-146@PLGA). RNA and protein expression levels were examined using quantitative real-time polymerase chain reaction and Western blotting, respectively. HFHS diet-induced POF model mice were administered miR-146@PLGA. Results: The ovarian tissue of mice fed a HFHS diet exhibited the typical pathological characteristics of POF. HFHS supplementation induced oxidative stress injury in the mouse OGCs, activation of the Dab2ip/Ask1/p38-Mapk signalling pathway and phosphorylation of γH2A.X in vitro and in vivo. The results of the luciferase reporter assay revealed that miR-146 specifically downregulated p38-Mapk14 expression. Meanwhile, co-immunoprecipitation and Western blot analyses revealed that HFHS supplementation upregulated nuclear p38-Mapk14 expression and consequently enhanced γH2A.X (Ser139) phosphorylation. The HFHS diet-induced POF mouse model treated with miR-146@PLGA exhibited downregulated p38-Mapk14 expression in the OGCs, mitigated OGC ageing and alleviated the symptoms of POF. Conclusions: This study demonstrated that HFHS supplementation activates the Dab2ip/Ask1/p38-Mapk signalling pathway and promotes γH2A.X phosphorylation by inhibiting the expression of endogenous miR-146b-5p, which results in OGC ageing and POF development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.