2012
DOI: 10.1109/twc.2012.051512.111622
|View full text |Cite
|
Sign up to set email alerts
|

Superposition Coding Strategies: Design and Experimental Evaluation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
117
0

Year Published

2012
2012
2021
2021

Publication Types

Select...
4
4

Relationship

0
8

Authors

Journals

citations
Cited by 164 publications
(119 citation statements)
references
References 13 publications
1
117
0
Order By: Relevance
“…I(X 1 ; W|H) ≥ I(X 1 ; Y|H). As a consequence, superposing X 2 H over W (11) results in no more capacity in comparison with the case where only X 1 is transmitted (12). Hence, the capacity of user 1 in the MU coherent setup is never higher than in the SU coherent setup.…”
Section: Downlink Non-coherent Multi-user Gainmentioning
confidence: 99%
See 1 more Smart Citation
“…I(X 1 ; W|H) ≥ I(X 1 ; Y|H). As a consequence, superposing X 2 H over W (11) results in no more capacity in comparison with the case where only X 1 is transmitted (12). Hence, the capacity of user 1 in the MU coherent setup is never higher than in the SU coherent setup.…”
Section: Downlink Non-coherent Multi-user Gainmentioning
confidence: 99%
“…Following the rationale of [11], in the Gaussian broadcast channel with multiple receivers, superposing messages with different power levels generally improves the achievable rates in comparison with time sharing procedures, provided that successive decoding at the receivers is feasible [12]. With the aim of validating this conclusion under non-coherent detection, in this work we combine superposition coding [11] with GC, i.e.…”
Section: System Modelmentioning
confidence: 99%
“…2 with the fact that the marks {t i } are independent from Ξ. More precisely, when θ ≥ 1 (SMUD Regime), it is not possible for the UE to decode any BS other than the strongest BS without SIC 11 . Thus, the coverage probability without SIC is the product of the probability that the strongest BS being accessible η and the probability of decoding the strongest BS p 1 .…”
Section: ) Without Sicmentioning
confidence: 99%
“…In particular, based on Prop. 2, a lower bound can be 11 Intuitively, decoding any BS weaker than the strongest BS implies that this BS is stronger than the strongest BS and causes contradiction. This argument can be made rigorous by applying Lemma 10 (in App.…”
Section: Proposition 13 In the K-tier Heterogeneous Cellular Networkmentioning
confidence: 99%
“…With recent advances in multi-user signal processing, the implementation of multi-packet transmission and reception is advancing rapidly. Indeed, software-defined radio implementations of multi-packet reception and transmission have been reported in the literature [2], [3]. Such techniques increase the network capacity substantially by decoding the otherwise colliding packets.…”
Section: Introductionmentioning
confidence: 99%