Artificial intelligence (AI) and reinforcement learning (RL) have improved many areas but are not yet widely adopted in economic policy design, mechanism design, or economics at large. The AI Economist is a two-level, deep RL framework for policy design in which agents and a social planner coadapt. In particular, the AI Economist uses structured curriculum learning to stabilize the challenging two-level, coadaptive learning problem. We validate this framework in the domain of taxation. In one-step economies, the AI Economist recovers the optimal tax policy of economic theory. In spatiotemporal economies, the AI Economist substantially improves both utilitarian social welfare and the trade-off between equality and productivity over baselines. It does so despite emergent tax-gaming strategies while accounting for emergent labor specialization, agent interactions, and behavioral change. These results demonstrate that two-level, deep RL complements economic theory and unlocks an AI-based approach to designing and understanding economic policy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.