Internet of Things (IoT) expansion led the market to find alternative communication technologies since existing protocols are insufficient in terms of coverage, energy consumption to fit IoT needs. Low Power Wide Area Networks (LPWAN) emerged as an alternative cost-effective communication technology for the IoT market. LoRaWAN is an open LPWAN standard developed by LoRa Alliance and has key features i.e., low energy consumption, long-range communication, builtin security, GPS-free positioning. In this paper, we will introduce LoRaWAN technology, the state of art studies in the literature and provide open opportunities. Several LPWANs emerged on both licensed and unlicensed bands, LoRaWAN, Sigfox and, NB-IoT are widely deployed vital technologies [3].Sigfox is an ultra-narrow band network that is patented and operated by Sigfox. Sigfox occupies 100 Hz and operates at 433MHz, 868MHz and 915MHz frequencies depending on the geographical regions. Technology has strict constraints on the number of packets (140 per day) and the packet size (12 bytes) to be sent. Also, LoRaWAN has similar policies to prevent network congestion allowing channels to be available only %1 duty-cycle for EU 868MHz (See Section 2.4.7). NB-IoT is an ultra-narrow band technology developed by the 3GPP group which can be adopted on GSM and LTE networks. It occupies 200 MHz bandwidth and can reach up to 200 kbps data transmission speed. Compared to LoRaWAN, Sigfox and NB-IoT operated by global network operators which limit deployments of the private networks [4].An overview comparison of the three networks is shown in Table 1. When LPWAN characteristics are considered LoRaWAN becomes a strong candidate for both scientific and industrial uses cases.LoRa referrer to Long Range and a physical layer technology patented by Semtech [5].LoRaWAN is an open protocol proposed by the LoRa Alliance which enables the MAC layer for the network [6].In this study, we will introduce the technological aspects of LoRaWAN and the state of art studies fulfilled about LoRaWAN till today. LoRaWAN protocol was first released in 2015 and had a few minor revisions, the differences in the protocol has been highlighted in the relevant subsection. In the survey, we will introduce LoRaWAN in depth both technological aspects and the use cases of its different areas. We categorized literature studies as in Figure 1. Studies are classified as two main sections; network technology and the applications, each section has own sub-branches. The majority of the work is focused on the coverage tests and applicability of the technology for different fields from large scale smart city applications to personal tracking assets. However, there are still gaps in the literature where researchers can address these problems such as post-disaster communication, decentralized networks, network management, and Adaptive Data Rate.