Conventional phased array imaging systems seek to reconstruct a target in the imaging domain by employing many transmitting and receiving antenna elements. These systems are suboptimal, due to the often large mutual information existing between two successive measurements. This chapter describes a new phased array system, which is based on the use of a novel compressive reflector antenna (CRA), that is capable of providing high sensing capacity in different imaging applications. The CRA generates spatial codes in the imaging domain, which are dynamically changed through the excitation of multiple-input-multiple-output (MIMO) feeding arrays. In order to increase the sensing capacity of the CRA even further, frequency dispersive metamaterials can be designed to coat the surface of the CRA, which ultimately produces spectral codes in near-and far-fields of the reflector. This chapter describes different concepts of operation, in which a CRA can be used to perform active and passive sensing and imaging.