The demand of functional foods is on the rise, and researchers are trying to develop nutritious dairy products by using well-characterized strains of bacteria. In this study, we identified locally isolated strains of Lactobacillus fermentum from Bubalus bubalis (Nilli Ravi buffalo) milk and evaluated their potential as probiotics in food products like fermented milk. Fifteen Lactobacillus strains were initially isolated, and only four strains (NMCC-2, NMCC-14, NMCC-17, and NMCC-27) were examined for morphological and biochemical characterizations due to their ability of gas production in Durham tubes. Moreover, these strains were selected for further probiotic characterizations due to their extreme morphological resemblance with lactic acid bacteria for their antimicrobial activity, enzymatic potential, autoaggregation capability, hydrophobicity, and acid and bile tolerance. All selected isolates showed significant probiotic potential. However, NMCC-14 and NMCC-17 strains showed maximum probiotic potential. The isolates (NMCC-2, NMCC-14, NMCC-17, and NMCC-27) were identified as Lactobacillus fermentum utilizing 16S rRNA gene sequencing. The in vivo safety study of NMCC-14 (dose: 1010 CFU/day/mice; 21 days, orally) showed no histological dysfunctions in a mouse model. Pathogenic bacterial enzymes reduced the beneficial bacterial load in the host gastrointestinal tract. These results suggest that the NMCC-14 strain is safe and can be potentially used as a probiotic. Moreover, fermented milk was prepared by using the NMCC-14 strain. The results revealed that NMCC-14 strain-based fermented milk had significantly (p < 0.05) higher protein content (4.4 ± 0.06), water-holding capacity (WHC), and dynamic viscosity as compared to non-fermented milk. The results suggest that L. fermentum NMCC-14 is safe and nontoxic; hence, it can be a beneficial supplement to be used for the development of dairy products to be subjected to further clinical testing.
The numerical analysis for two-dimensional oblique stagnation point flow with the magnetohydrodynamic effects of an incompressible unsteady Jeffrey fluid model caused by an oscillatory and stretching sheet has been presented in this article. The Brownian motion and thermophoresis impacts are taken into consideration. The similarity transformation technique is implemented on the governing partial differential equations of the Jeffrey fluid model to obtain a set of nonlinear coupled ordinary differential equations and then these resulting equations are numerically computed with the help of BVP-Maple programming. The variation in the behavior of velocity, temperature, and concentration profile influenced by the governing parameters, has been explicitly explored and displayed through graphs. The numerical results are highlighted in tabular form and through these outcomes, the skin friction coefficient, Nusselt number, and Sherwood number have been investigated. These physical quantities rise for gradually increasing the Hartmann number and ratio of relaxation to retardation time. However, these reduce for gradually growing Jeffrey fluid parameter.
Numerous prototypes of computational imaging systems have recently been presented in the microwave and millimeter-wave domains, enabling the simplification of associated active architectures through the use of radiating cavities and metasurfaces that can multiplex signals encoded in the physical layer. This paper presents a new reconstruction technique leveraging the sparsity of the signals in the time-domain and decomposition of the sensing matrix by support detection, the size of the computational inverse problem being reduced significantly without compromising the image quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.