Healing of biomaterial implants varies depending on the type and structure of material and the tissue surrounding the implant. In this study we examined structural differences of 30 microm, 60 microm, and 100 microm expanded polytetrafluoroethylene (ePTFE) using scanning electron microscopy, and we also investigated differences in healing for these three different porosity ePTFE grafts implanted within subcutaneous tissue and adipose tissue. Scanning electron microscopic examination of 30 microm, 60 microm, and 100 microm ePTFE revealed structural differences and differences in fiber density within the internodal space. Circular patches (6 mm in diameter) of 30 microm ePTFE were implanted within subcutaneous tissue and epididymal fat pads of male Sprague-Dawley rats. After 5 weeks, the implants were removed and analyzed for fibrous capsule formation, endothelialization, and for activated monocytes and macrophages in association with the material. Histological evaluation revealed dense fibrous capsule formation surrounding only the 30 microm ePTFE subcutaneous implants. From immunohistochemistry data obtained, we generated an Endothelialization Index (measure of neovascularization) and a Monocyte/Macrophage Index (measure of inflammatory response) for each sample. Consistently, 60 microm ePTFE had the greatest Endothelialization Index at both implant sites while 100 microm ePTFE generally had the largest values for the Monocyte/Macrophage Index. These data indicate that both the structure of the material and the site of implant influence the healing characteristics of ePTFE and suggest that activated monocytes and/or macrophages associated with the implant may inhibit endothelialization of ePTFE.