This study investigated the effect of post-brazing cooling rate and Si addition on the intergranular corrosion (IGC) susceptibility of brazed Al-Mn-Cu alloys by electrochemical analysis and microstructure observation. Water-quenched samples after brazing exhibited no IGC susceptibility, whereas slowly-cooled samples were prone to IGC. The results suggest that IGC is caused by precipitation during cooling. In addition, it was observed that IGC susceptibility depended on the Si content. An alloy sample with a low Si-additive content exhibited high IGC susceptibility because Mn/Cu-depleted zone was formed near the grain boundaries as a result of the preferential precipitation of Al 6 (Mn,Fe) and CuAl 2 on the grain boundaries. In contrast, moderate Si addition inhibited IGC because the decrease of the Mn content in the grain interiors due to enhanced precipitation of Al 15 (Mn,Fe) 3 Si 2 in the grain. Additionally, Cu-depleted zone also disappeared because preferential precipitation of CuAl 2 on the grain boundaries was prevented. The excess-Si alloy exhibited high IGC susceptibility because Si-depleted zone formed around the grain boundaries as a result of the preferential precipitation of coarse Si particles on the grain boundaries although the Mn/Cu-depleted zones were not formed.