Glass fiber reinforced polymers (GFRPs) are used extensively in many industries because of their low cost and high mechanical properties. Even if composite manufacturing processes are well controlled and allow to fabricate near net shapes, machining operations are still necessary to complete the manufacturing. As a composite material, GFRP machining remains difficult because of its heterogeneous and anisotropic character. This work intends to investigate the effect of graphene addition to the epoxy matrix of GFRP on its machinability. The epoxy was filled with 1 wt% graphene by mixing, sonicating, and then being used to produce unidirectional GFRP laminate by hand layup methods. Thermocouples were bonded on a chemical vapor deposition (CVD) diamond coated tool in order to record cutting temperatures during the trimming process. The cutting forces were recorded and the resulting surface roughness after trimming was measured to qualify properly the machinability of the modified GFRP. Compared to the reference material (GFRP without graphene), the additive improved the machining process by decreasing the cutting temperature and forces as well as the surface roughness without deteriorating the inter-laminar shear strength.