Layered double hydroxides (LDHs) tend to be a promising material in the field of polymer nanocomposites because it possesses unique chemical and structural properties. The novelty of layered double hydroxides (LDHs) comparing to other conventional fillers is connected with possibility of surface functionalization by introduction of various organic species into an interlayer area. Organic modifiers could act not only as intercalation promoters but also have additional functions such as UV stabilizers, anti-aging substances, pigments, antimicrobial, and antifungal activity. Additionally, in the case of nitrile elastomers, layered double hydroxides (LDHs) could play role as curing substances, reinforcing fillers, and improve mechanical, barrier and thermal properties of rubber products. The purpose of our experimental work was to examine the effect of Mg-Al-LDHs on the crosslink density and properties of nitrile rubber. Various LDHs containing, respectively, 30, 63, 70 wt% of magnesium were applied as a curing system for carboxylated acrylonitrile-butadiene rubber (XNBR) composites prepared by melt compounding methods. The influence of ionic liquids containing saccharinate, acesulfamate ions on the curing reactions and properties of rubber was investigated.