Synergistic effects of different fillers are widely utilized in polymer technology. The combination of various types of fillers is used to improve various properties of polymer composites. In this paper, a synergistic effect of flame retardants was tested to improve the performance of ceramizable composites. The composites were based of styrene-butadiene rubber (SBR) used as polymer matrix. Three different types of flame retardants were tested for synergistic effect: Mica (phlogopite) high aspect-ratio platelets, along with low softening point temperature glass frit (featuring ceramization effect), and melamine cyanurate, a commonly used flame retardant promoting carbonaceous char. In order to characterize the properties of the composites, combustibility, thermal stability, viscoelastic properties, micromorphology, and mechanical properties were tested before and after ceramization. The results obtained show that the synergistic effect of ceramization promoting fillers and melamine cyanurate was especially visible with respect to the flame retardant properties resulting in a significant improvement of fire resistance of the composites.
The goal of this work was to study the effect of graphene nanoplatelets (GnPs) modified with ionic liquid (IL) on properties of styrene–butadiene rubber (SBR) composites. GnPs were decorated with IL or were modified in bulk directly during rubber mix preparation. The ionic liquid used was 1-butyl-4-methylpyridinium tetrafluoroborate (BMPFB). The textural properties were studied to confirm surface modification of GnPs with BMPFB. In these investigations, the impact of the concentration of GnPs and the effect of the method of GnPs’ modification with IL on elastomers properties are described. Some thermal measurements (e.g., differential scanning calorimetry and thermogravimetry) were conducted to characterize the thermal stability or the vulcanization process of the investigated samples. Complementary experimental techniques were used to investigate the properties of the obtained elastomers, specifically tensile testing, and electrical and barrier property measurements. The deposition of IL on the GnPs’ surface positively influenced the mechanical and barrier properties of elastomers. However, samples containing graphene nanoplatelets modified from solution were characterized by less electrical conductivity. SEM analysis was additionally performed to investigate GnPs’ dispersion within SBR composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.