This work introduces a methodology for the statistical mechanical analysis of polymeric chains under tension controlled by optical or magnetic tweezers at thermal equilibrium with an embedding fluid medium. The response of single bonds between monomers or of entire groups of monomers to tension is governed by the activation of statistically interacting particles representing quanta of extension or contraction. This method of analysis is capable of describing thermal unbending of the freely-jointed or worm-like chain kind, linear or nonlinear contour elasticity, and structural transformations including effects of cooperativity. The versatility of this approach is demonstrated in an application to double-stranded DNA undergoing torsionally unconstrained stretching across three regimes of mechanical response including an overstretching transition. The three-regime forceextension characteristic, derived from a single free-energy expression, accurately matches empirical evidence. (c) J τ J J (b) (d) (a) FIG. 1: (Color online) Schematic representations for a chain of N = 7 monomers of (a) the reference state, (b) a state under tension with extension particles activated, (c) a state under tension and torque with twist-contraction particles activated, and (d) a state under tension with extension particles and contact particles activated.