The species of Antrodia are one of the difficult-to-classify and obscure groups of poroid Aphyllophorales based on morphological appearance. However, it is becoming increasingly important to reliably identify the entire suite of Antrodia camphorata strains and Antrodia species due to the potential pharmaceutical value of their biologically active ingredients. In this study, the internal transcribed spacer (ITS) region of the ribosomal RNA gene (rDNA) was sequenced and phylogenetically analyzed in a number of Antrodia fungal species and strains. ITS amplicons from the Antrodia species tested ranged in size from 543 to 610 bp; the size of the ITS of A. camphorata strains ranged from 592 to 596 bp. The overall sizes of ITS2 and 5.8S ribosomal RNA gene of all A. camphorata strains tested in this study were shown to be 217 and 158 bp, respectively. A phylogenetic analysis of ITS data generated, which included sequences of 11 A. camphorata strains and nine other Antrodia species, showed three clearly distinct groups. Group 1 includes A. camphorata, Antrodia salmonea, and Antrodia carbinca strains. Within Group 2, Antrodia sinuosa and Antrodia xantha were clustered together. Group 3 contained Antrodia albida, A. heteromorpha, A. serialis, and A. malicola. The observed sequence diversity among ITS alleles provided an effective tool for differentiating strains of A. camphorata, A. salmonea, A. xantha, A. sinuosa, or A. serialis. Polymorphisms arising within the ITS1-5.8S-ITS2 region can provide practical markers for establishing a foundation for the further expansion of an ITS sequence database of medically important fungi.