The antibacterial activity of 29 different polyoxometalates (POMs) against Moraxella catarrhalis was investigated by determination of the minimum inhibitory concentration (MIC). The Preyssler type polyoxotungstate (POT) [NaP5W30O110]14− demonstrates the highest activity against M. catarrhalis (MIC = 1 μg/ml) among all tested POMs. Moreover, we show that the Dawson type based anions, [P2W18O62]6−, [(P2O7)Mo18O54]4−, [As2Mo18O62]6−, [H3P2W15V3O62]6−, and [AsW18O60]7− are selective on M. catarrhalis (MIC range of 2-8 μg/ml). Among the six tested Keggin type based POTs ([PW12O40]3−, [H2PCoW11O40]5−, [H2CoTiW11O40]6−, [SiW10O36]8−, [SbW9O33]9−, [AsW9O33]9−), only the mono-substituted [H2CoTiW11O40]6− showed MIC value comparable to those of the Dawson type group. Polyoxovanadates (POVs) and Anderson type POMs were inactive against M. catarrhalis within the tested concentration range (1-256 μg/ml). Four Dawson type POMs [P2W18O62]6−, [(P2O7)Mo18O54]4−, [As2Mo18O62]6−, [H3P2W15V3O62]6− and the Preyssler POT [NaP5W30O110]14− showed promising antibacterial activity against M. catarrhalis (MICs < 8 μg/ml) and were therefore tested against three additional bacteria, namely S. aureus, E. faecalis, and E. coli. The most potent antibacterial agent was [NaP5W30O110]14−, exhibiting the lowest MIC values of 16 μg/ml against S. aureus and 8 μg/ml against E. faecalis. The three most active compounds ([NaP5W30O110]14−, [P2W18O62]6−, and [H3P2W15V3O62]6−) show bacteriostatic effects in killing kinetics study against M. catarrhalis. We demonstrate, that POM activity is mainly depending on composition, shape, and size, but in the case of medium-size POTs (charge is more than −12 and number of addenda atoms is not being higher than 22) its activity correlates with the total net charge.